ÍøÕ¾ÉÏÏßÖ»ÊÇÊý×ÖÒµÎñµÄÆðµã£¬¶ø·ÇÖյ㡣¾ÝAdobe AnalyticsÑо¿£¬³ÖÐø½øÐÐÊý¾ÝÓÅ»¯µÄÍøÕ¾±È"½¨¶ø²»¹Ü"µÄÕ¾µãƽ¾ù¶à»ñµÃ73%µÄת»¯ÂÊ¡£Í¨¹ý¹¹½¨"¼à²â-·ÖÎö-µü´ú"µÄ±Õ»·ÏµÍ³£¬Êý¾Ý½«³ÉΪÇý¶¯ÔËÓª¾ö²ßµÄ"Éñ¾ÖÐÊà"¡£
Ò»¡¢ºËÐļà²â¾ØÕóµÄ½¨Á¢
-
Óû§ÐÐΪ׷×ÙÈýάģÐÍ
-
Á÷Á¿²ã£ºÀ´Ô´ÇþµÀÖÊÁ¿ÆÀ¹À£¨UTM²ÎÊý¾«Ï¸»¯²¿Êð£©
-
ÐÐΪ²ã£ºµã»÷ÈÈͼÓë¹ö¶¯Éî¶È·ÖÎö£¨HotjarµÈ¹¤¾ß£©
-
ת»¯²ã£º¶à´¥µã¹éÒòÄ£ÐÍ£¨MTA£©Ê¾Àý£º
def attribution_model(user_journey): touchpoints = len(user_journey) return {tp: 0.5**(touchpoints-i-1) for i,tp in enumerate(user_journey)}
-
ÐÔÄܽ¡¿µ¶È¿´°å
¶þ¡¢ÖÇÄÜÕï¶Ï¹¤¾ßÁ´
-
Òì³£¼ì²âËã·¨
-
Óû§Á÷ʧԤ²âÄ£ÐÍ
Èý¡¢¾ö²ßÖ§³Öϵͳ
-
¶¯Ì¬ÓÅÏȼ¶ÆÀ¹À¾ØÕó
| ÎÊÌâÀàÐÍ | Ó°Ïì¶È(1-5) | ÐÞ¸´ÄѶÈ(1-5) | ÓÅÏȼ¶·ÖÊý |
|----------------|------------|--------------|-----------|
| ¹ºÎï³µ¼ÓÔØ³¬Ê± | 5 | 3 | 8 |
| ´ÎÒªÎݸ´íÎó | 2 | 1 | 1.5 |
-
×Ô¶¯»¯AB²âÊÔÆ½Ì¨
ËÄ¡¢±Õ»·ÓÅ»¯°¸Àý
ij¿ç¾³µçÉÌͨ¹ýÊý¾Ý¼à²â·¢ÏÖ£º
-
ÎÊÌⶨλ£ºÖ§¸¶Ò³µÚ¶þ²½Á÷ʧÂÊ´ï62%
-
¸ùÒò·ÖÎö£º
-
¸Ä½øÐ§¹û£º
ת»¯ÌáÉý£º38% ¡ú 53%
¿ÍËßÂÊϽµ£º7.2% ¡ú 2.1%
Îå¡¢¸ß½×Êý¾ÝÓ¦ÓÃ
-
¸öÐÔ»¯ÍƼöÒýÇæ
-
Ô¤²âÐÔ¿â´æ¹ÜÀí
-
»ùÓÚÁ÷Á¿Ô¤²âµÄ±¸»õÄ£ÐÍ£º
def predict_inventory(page_views, conversion_rate): return page_views * conversion_rate * 1.2
¹Ø¼ü¶´²ì£º ÓÅÐãµÄÊý¾ÝÔËÓªÕßÓ¦¾ß±¸"Êý¾Ý·Òë"ÄÜÁ¦¡ª¡ª½«¼à²âÊý×Öת»¯ÎªÈýÀà¾ö²ß£º
-
Á¢¼´Ðж¯ÏÈç·þÎñÆ÷À©ÈÝ£©
-
µü´úÓÅ»¯ÏÈ簴ťλÖõ÷Õû£©
-
Õ½ÂÔ´¢±¸ÏÈçÖ§¸¶·½Ê½ÍØÕ¹£©
Ëæ×ÅGoogle Analytics 4µÈÐÂÒ»´ú¼à²â¹¤¾ßµÄÆÕ¼°ÁôÑ§ÍøÕ¾¿ª·¢Éè¼Æ£¬ÍøÕ¾ÔËÓªÒѽøÈë"ÏÔ΢¾µ¼¶"ÓÅ»¯Ê±´ú¡£ÄÇЩ½«Êý¾Ý¼à²âϵͳ×÷Ϊ"Êý×ÖÉñ¾Ä©ÉÒ"µÄÆóÒµºþÄÏÕþ´óÍøÂ翪·¢£¬ÕýÔÚÐγɾºÕù¶ÔÊÖÄÑÒÔÄ£·ÂµÄ¾ö²ßËÙ¶ÈÓÅÊÆ¡£¼Çס£ºÃ¿¸öÊý¾ÝÒì³£µã±³ºó°ÙÀûÍþ£¬¶¼²Ø×ÅÒ»¸ö´ý·¢¾òµÄÉÌÒµ»ú»á»òϵͳ·çÏÕ¡£
£¬